Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Bing-Xin Liu, ${ }^{\text {a }}$ Jing-Jing Nie ${ }^{b}$ and Duan-Jun Xu ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Shanghai University, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.026$
$w R$ factor $=0.060$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## catena-Poly[(2,2'-diamino-4,4'-bi-1,3-thiazole$\left.\kappa^{2} N, N^{\prime}\right)$ lead(II)]-di- $\mu$-isonicotintato- $\left.\kappa^{4} O: O^{\prime}\right]$

In the polymeric title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2^{-}}\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right]_{n}$, the $\mathrm{Pb}^{\text {II }}$ ion is located on a twofold axis and coordinated by one $N, N^{\prime}$-bidentate diaminobithiazole (DABT) ligand and four O -monodentate isonicotinate anions in a very distorted cis $-\mathrm{PbN}_{2} \mathrm{O}_{4}$ octahedral geometry. The carboxylate group of the isonicotinate anion bridges two $\mathrm{Pb}^{\mathrm{II}}$ ions, forming a polymeric chain. The complete DABT molecule is generated by twofold symmetry; its two thiazole rings are twisted with a dihedral angle of $9.5(2)^{\circ}$. There are no $\pi-\pi$ stacking interactions in the title compound, but $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds help to stabilize the structure.

## Comment

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential applications in the field of soft magnetic materials (Sun et al., 1997). As a continuation of our investigations of metal complexes with DABT (Liu et al., 2003), the title $\mathrm{Pb}^{\mathrm{II}}$ complex, (I), has been prepared and its X-ray crystal structure is presented here.

(I)

The coordination environment around the $\mathrm{Pb}^{\mathrm{II}}$ ion in (I) is shown in Fig. 1. The $\mathrm{Pb}^{\mathrm{II}}$ ion is located on a twofold axis and is coordinated by one DABT ligand and four isonicotinate anions, resulting in a very distorted cis $-\mathrm{PbN}_{2} \mathrm{O}_{4}$ octahedral geometry (Table 1). The two unique $\mathrm{Pb}-\mathrm{O}$ distances differ by some $0.11 \AA$. The two carboxylate $\mathrm{C}-\mathrm{O}$ distances are approximately equal, implying charge delocalization for the $\mathrm{CO}_{2}{ }^{-}$group. The carboxyl group of each isonicotinate anion bridges two $\mathrm{Pb}^{\mathrm{II}}$ ions, forming a polymeric complex chain, extending along the crystallographic $c$ axis (Fig. 2).

The DABT system possesses twofold symmetry with the the mid-point of the $\mathrm{C} 3-\mathrm{C} 3^{\text {ii }}$ bond located on the rotation axis [symmetry code: (ii) $1-x, y, \frac{3}{2}-z$ ]. The two thiazole rings of

Received 7 August 2006
Accepted 7 August 2006


Figure 1
The molecular structure of (I) expanded to show the coordination environment around the $\mathrm{Pb}^{\text {II }}$ ion $(30 \%$ probability displacement ellipsoids; arbitrary spheres for H atoms). [Symmetry codes: (i) $1-x$, $2-y, 1-z$; (ii) $1-x, y, \frac{3}{2}-z$; (iii) $x, 2-y, \frac{1}{2}+z$.]


Figure 2
The unit-cell packing of (I), showing polymeric complex chains and the parallel arrangement of DABT ligands [symmetry code: (i) $1-x, 2-y$, $1-z]$. H atoms have been omitted.

DABT are twisted with respect to each other, with a dihedral angle of $9.5(2)^{\circ}$; this compares with an equivalent value of 14.7 (3) ${ }^{\circ}$ found in a $\mathrm{Cd}^{\text {II }}$ complex with DABT (Zhang et al., 2006).

The amino group of DABT makes hydrogen bonds to adjacent carboxyl O and pyridine N atoms (Table 2), which help to stabilize the crystal structure. A parallel arrangement of DABT ligands from neighboring polymeric chains is observed (Fig. 2). However, the closest centroid-to-centroid separation of 4.142 (3) Å between thiazole rings related by an inversion center at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ indicates that there are no significant aromatic $\pi-\pi$ stacking interactions between them.

## Experimental

An aqueous solution ( 20 ml ) containing DABT ( 1 mmol ) and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(1 \mathrm{mmol})$ was mixed with an aqueous solution ( 10 ml ) of isonicotinic acid ( 1 mmol ) and $\mathrm{NaOH}(1 \mathrm{mmol})$. The mixture was refluxed for 5 h . The solution was filtered after cooling to room temperature. Yellow single crystals of (I) were obtained from the filtrate after 10 d .

## Crystal data

| $\left[\mathrm{Pb}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right]$ | $Z=4$ |
| :--- | :--- |
| $M_{r}=649.66$ | $D_{x}=2.106 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Monoclinic, $C 2 / c$ | Mo $K \alpha$ radiation |
| $a=25.430(3) \AA$ | $\mu=8.48 \mathrm{~mm}^{-1}$ |
| $b=10.7493(19) \AA$ | $T=295(2) \mathrm{K}$ |
| $c=7.7480(12) \AA$ | Prism, yellow |
| $\beta=104.715(12)^{\circ}$ | $0.12 \times 0.10 \times 0.10 \mathrm{~mm}$ |
| $V=20.5(6) \AA^{3}$ |  |

## Data collection

Bruker APEX-2 diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.355, T_{\max }=0.430$

## 5814 measured reflections

2077 independent reflections
1939 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.2^{\circ}$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0262 P)^{2}\right. \\
& \quad+4.0444 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.71 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.060$
$S=1.07$
2077 reflections
142 parameters
H -atom parameters constrained
$Z=4$
Mo $K \alpha$ radiation
$\mu=8.48 \mathrm{~mm}^{-1}$
Prism, yellow
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Pb}-\mathrm{N} 1$ | 2.544 (4) | C4-O1 | 1.259 (7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pb}-\mathrm{O} 1$ | 2.510 (4) | $\mathrm{C} 4-\mathrm{O} 2$ | 1.244 (8) |
| $\mathrm{Pb}-\mathrm{O} 2{ }^{\text {i }}$ | 2.622 (4) |  |  |
| $\mathrm{O} 1^{\text {ii }}-\mathrm{Pb}-\mathrm{O} 1$ | 165.1 (2) | $\mathrm{N} 1-\mathrm{Pb}-\mathrm{O} 2^{\text {iii }}$ | 149.69 (14) |
| $\mathrm{O} 1-\mathrm{Pb}-\mathrm{N} 1$ | 86.01 (13) | $\mathrm{O} 1-\mathrm{Pb}-\mathrm{O} 2{ }^{\text {i }}$ | 100.2 (2) |
| $\mathrm{O} 1-\mathrm{Pb}-\mathrm{N} 1^{\text {ii }}$ | 81.49 (16) | $\mathrm{N} 1-\mathrm{Pb}-\mathrm{O} 2^{\text {i }}$ | 83.46 (14) |
| $\mathrm{N} 1-\mathrm{Pb}-\mathrm{N} 1^{\text {ii }}$ | 66.4 (2) | $\mathrm{O} 2^{\text {iiii }}-\mathrm{Pb}-\mathrm{O} 2^{\text {i }}$ | 126.8 (2) |
| $\mathrm{O} 1-\mathrm{Pb}-\mathrm{O} 2{ }^{\text {iii }}$ | 86.55 (18) |  |  |
| Symmetry codes: $x,-y+2, z+\frac{1}{2}$. | $-x+1,-y$ | $z+1 ; \quad \text { (ii) }$ | $z+\frac{3}{2} ; \quad$ (iii) |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$ | 0.86 | 1.99 | $2.816(7)$ | 160 |
| $\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~N}^{\text {iv }}$ | 0.86 | 2.12 | $2.961(8)$ | 164 |

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (iv) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

## metal-organic papers

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

## References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bruker (2004). SMART (Version 6.36A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 71-76.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Sun, W.-L., Gao, X. \& Lu, F.-J. (1997). Appl. Polym. Sci. 64, 23092315.

Zhang, L.-J., Liu, B.-X., Ge, H.-Q. \& Xu, D.-J. (2006). Acta Cryst. E62, m1944m1945.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

